UVa Course Catalog (Unofficial, Lou's List)
Complete Catalog for the Electrical and Computer Engineering Department    
Class Schedules Index Course Catalogs Index Class Search Page
These pages present data mined from the University of Virginia's student information system (SIS). I hope that you will find them useful. — Lou Bloomfield, Department of Physics
Computer Engineering
CPE 6190Computer Engineering Perspectives (1 - 3)
Offered
Fall 2024
This course is designed for first year Graduate students in the Computer Engineering Program to help orient new graduate students to the current research topics, available research tools, software and systems, publishing systems, and other topics to help new students become successful. Prerequisite: CpE grduate student or instructor permission
CPE 6890Industrial Applications (1 - 3)
Offered
Fall 2024
Students register for this course to complement an industry work experience. Topics focus on the application of engineering principles, analysis, methods and best practices in an industrial setting. A final report is required.
CPE 7993Independent Study (1 - 3)
Detailed study of graduate course material on an independent basis under the guidance of a faculty member
CPE 7995Supervised Project Research (1 - 6)
Formal record of student commitment to project research for a Masters degree under the guidance of a faculty advisor.
CPE 8000TNon-UVa Transfer/Test Credit Approved (1 - 48)
Non-UVa Transfer/Test Credit Approved
CPE 8897Graduate Teaching Instruction (1 - 6)
For Computer Engineering Master's Students who are teaching assistants.
CPE 8999Non-Topical Research, Master's Thesis (1 - 12)
Formal record of student commitment to thesis research for the Master of Science degree under the guidance of a faculty adviser. May be repeated as necessary.
CPE 9897Graduate Teaching Instruction (1 - 6)
For doctoral students who are teaching assistants.
CPE 9999Non-Topical Research, Doctoral Dissertation (1 - 12)
Offered
Fall 2024
Formal record of student commitment to doctoral research under the guidance of a faculty adviser. May be repeated as necessary.
Electrical and Computer Engineering
ECE 1000TNon-UVa Transfer/Test Credit (1 - 10)
ECE 1501Special Topics in Electrical & Computer Engineering (1)
Student-led special topic courses which vary by semester.
ECE 2066Science of Information (3)
An introduction to the fundamental scientific principles governing information science and engineering. Topics include: definition of information; entropy; information representation in analog and digital forms; information transmission; spectrum and bandwidth; information transformation including data compression, filtering, encryption, and error correction; information storage and display; and large-scale information systems. Technologies for implementing information functions.
ECE 2200Applied Physics (4)
Offered
Fall 2024
An applied physics course in electricity and magnetism, with emphasis on the technologies derived from them. An integrated lab component will provide team-based, hands-on examples and reviews of key concepts. Calculus 3 (Multivariable) may be taken concurrently; however, students should be proficient with vectors and calculus, including the chain rule and trigonometric functions. Prerequisite: PHYS 1425 or PHYS 1420, and APMA 1110
Course was offered Spring 2024, Fall 2023
ECE 2300Applied Circuits (3)
Offered
Fall 2024
This course introduces electrical engineering theory and its application to circuits containing active and passive circuit elements. Content includes fundamental concepts such as voltage, current, power, energy and Ohm's Law as well as circuit analysis techniques including node-voltage and mesh-current based on circuit laws and theorems such as Kirchhoff Laws, source superposition, and equivalent circuits. Prerequisite: Must have completed (APMA 1110 or MATH 1320) AND (ENGR 1624 or ENGR 1410 or ENGR 2595 Topic Engineering Foundations I or ENGR 1010)
Course was offered Spring 2024, Fall 2023
ECE 2330Digital Logic Design (3)
Offered
Fall 2024
Introduction to analysis and design of digital systems from switches to gates to components to CPU. Analysis and design of combinational and sequential components including multiplexers and demultiplexers, decoders and encoders, comparators, adders and ALU, registers and register files, counters and timers, RTL design, culminating in the design of a simple programmable processor. 10-12 studio design activities. Cross-listed as CS 2330.
ECE 2410Intro to Machine Learning (3)
Offered
Fall 2024
Learn about and experiment with machine learning algorithms using Python. Applications include image classification, removing noise from images, and linear regression. Students will collect and interpret data, learn machine learning theory, build systems-level thinking skills required to strategize how to break the problem down into various functions, and to implement, test and document those functions. Prerequisite: CS 111X
Course was offered Spring 2024
ECE 2501Special Topics in Electrical and Computer Engineering (0.5 - 4.5)
A second-level undergraduate course covering a topic not normally covered in the course offerings. The topic usually reflects new developments in the electrical and computer engineering field. Offering is based on student and faculty interests.
ECE 2502Special Topics in Electrical and Computer Engineering (0.5 - 4.5)
A second-level undergraduate course covering a topic not normally covered in the course offerings. The topic usually reflects new developments in the electrical and computer engineering field. Offering is based on student and faculty interests.
ECE 2550Topics in Applied Research and Design Lab (1.5)
A lab-based course that provides a hands-on way to learn about new developments in electrical and computer engineering fields. Topics include technologies or application areas that relate to ongoing design and research activities of faculty and students.
ECE 2600Electronics (3)
Offered
Fall 2024
Studies the modeling, analysis, design, computer simulation, and measurement of electrical circuits which contain non-linear devices such as junction diodes and field effect transistors. Includes the gain and frequency response of linear amplifiers, power supplies, and other practical electronic circuits. This course is taught in a studio style with mixed lecture and lab. Pre or Corequisite: APMA 2130 and ECE 2700 AND Prerequisite: (ECE 2300 or ECE 2501 Topic Applied Circuits (link 15599)
Course was offered Spring 2024, Fall 2023
ECE 2630ECE Fundamentals I (4)
Electrical circuits with linear applications of passive and active elements; Kirchhoff's voltage and current laws to derive circuit equations; solutions for first- and second-order transient and DC steady-state responses; AC steady-state analysis; frequency and time domain signal representations; Fourier series; phasor methods; complex impedance; transfer functions; Thevenin/Norton equivalent models; controlled sources. Prerequisite: APMA 1110.
ECE 2660ECE Fundamentals II (4)
Studies the modeling, analysis, design, computer simulation, and measurement of electrical circuits which contain non-linear devices such as junction diodes, bipolar junction transistors, and field effect transistors. Includes the gain and frequency response of linear amplifiers, power supplies, and other practical electronic circuits. This course is taught in the studio mode with mixed lecture and lab. Prerequisite: ECE 2630 AND (Corequisite APMA 2130 OR MATH 3250)
ECE 2700Signals and Systems (3)
Offered
Fall 2024
Develops tools for analyzing signals and systems in continuous and discrete-time, for controls, communications, signal processing and machine learning. Primary concepts are the representation of signals and linear systems in the time domain (convolution, differential equations, state-space representation) and in the frequency domain (Fourier/Laplace analysis) including practical programming examples. Pre or Coreq: APMA 2130 AND Prerequisite (ECE 2300 or ECE 2501 Topic Applied Circuits (link 15599))
Course was offered Spring 2024, Fall 2023
ECE 3103Solid State Devices (3)
Offered
Fall 2024
Analyzes the basics of band theory and atomic structure; charge-transport in solids; current voltage characteristics of semiconductor devices, including p-n junction diodes, bipolar transistors, Schottky diodes, and insulated-gate field-effect transistors; electron emission; and superconductive devices. Prerequisite: ECE 2630.
ECE 3209Electromagnetic Fields (4)
Offered
Fall 2024
Analyzes the basic laws of electromagnetic theory, beginning with static electric and magnetic fields, and concluding with dynamic E&M fields; plane wave propagation in various media; Maxwell's Laws in differential and integral form; electrical properties of matter; transmission lines, waveguides, and elementary antennas. Prerequisite: APMA 2130 & ECE 2630
ECE 3250Electromagnetic Energy Conversion (3)
Analyzes the principles of electromechanical energy conversion; three-phase circuit analysis; magnetic circuits and nonlinearity; transformers; electromagnetic sensing devices; DC, synchronous, stepper, and induction machines; equivalent circuit models; power electronic control of machines, switching regulators, Class D amplification. Laboratory, computer, and design exercises complement coverage of fundamental principles. Prerequisite: ECE 2660 or ECE 2600, ECE 3209 or PHYS 2415 or ECE 2200
ECE 3251Electromagnetic Energy Conversion Lab (1.5)
This lab provides practical exposure and continuation of the topics covered in the lecture sections of ECE 3250. Topics include principles of measurement and analysis using computerized instrumentation. Co-requisite ECE 3250
ECE 3430Introduction to Embedded Computer Systems (4)
Offered
Fall 2024
An embedded computer is designed to efficiently interact directly with its physical environment. This lab-based course explores architecture and interface issues relating to the design, evaluation and implementation of embedded systems . Topics include hardware and software organization, power management, digital and analog I/O devices, memory systems, timing and interrupts. Prerequisites: (ECE 2300 or ECE 2630) AND ECE 2330 AND CS 2130
ECE 3501Special Topics in Electrical and Computer Engineering (0.5 - 4.5)
A third-level undergraduate course covering a topic not normally covered in the course offerings. The topic usually reflects new developments in the electrical and computer engineering field. Offering is based on student and faculty interests.
ECE 3502Special Topics in Electrical and Computer Engineering (0.5 - 4.5)
Offered
Fall 2024
A third-level undergraduate course covering a topic not normally covered in the course offerings. The topic usually reflects new developments in the electrical and computer engineering field. Offering is based on student and faculty interests.
ECE 3660Microelectronic Circuits (4)
Offered
Fall 2024
Construction of electronic circuit design to specifications. Focuses on computer simulation, construction, and testing of designed circuits in the laboratory to verify predicted performance. Includes differential amplifiers, feedback amplifiers, multivibrators, and digital circuits. Three lecture and three laboratory hours. Prerequisite: ECE 2600 or ECE 2660
ECE 3750ECE Fundamentals III (4)
Develops tools for analyzing signals and systems operating in continuous-time, with applications to control, communications, and signal processing. Primary concepts are representation of signals, linear time-invariant systems, Fourier analysis of signals, frequency response, and frequency-domain input/output analysis, the Laplace transform, and linear feedback principles. Practical examples are employed throughout, and regular usage of computer tools (Matlab, CC) is incorporated. Students cannot receive credit for both this course and BIOM 3310. Prerequisite: ECE 2660, APMA 2130
ECE 4103Solid State Devices for Renewable Energy Conversion (3)
This class discusses solid state devices that are used for renewable energy application. While we will provide a general overview of most new and interesting technologies via lectures, discussions, and research presentations, we will focus on the detailed technical aspects of few devices namely: solar cells, thermionic devices, thermoelectric devices, solar thermal (CSPs), and batteries.
ECE 4140Fundamentals of Nanoelectronics (3)
Today's electronic devices are reaching nanometer dimensions where fundamental quantum and atomistic processes dominate. Instead of the traditional 'top-down' classical viewpoint in "Solid State Device" courses, quantum transport principles are needed to understand `bottom-up' how current flows through individual atoms, molecules, nanotubes or spintronic devices. This course provides a convenient starting point. Prerequisite: APMA 2130
ECE 4155Microelectronic Integrated Circuit Fabrication Laboratory (1.5)
Fabrication and testing of MOS capacitors. Determination of material properties, including carrier concentration, mobility, lifetime, orientation, and layer thickness. Device fabrication using oxidation, diffusion, evaporation, and device testing of MOS and power bipolar transistors. Corequisite: ECE 5150.
ECE 4209RF Circuit Design and Wireless Systems (3)
Offered
Fall 2024
Design and analysis of wireless communication circuits. Topics covered include transmission lines, antennas, filters, amplifiers, mixers, noise, and modulation techniques. The course is built around a semester long design project. Prerequisite ECE 2700 or ECE 3750
ECE 4265Microwave Engineering Laboratory (1.5)
Analyzes the measurement and behavior of high-frequency circuits and components; equivalent circuit models for lumped elements; measurement of standing waves, power, and frequency; use of vector network analyzers and spectrum analyzers; and computer-aided design, fabrication, and characterization of microstrip circuits. Corequisite: ECE 5260 or instructor permission.
ECE 4332Introduction to VLSI Design (4.5)
Digital CMOS circuit design and analysis: combinational circuits, sequential circuits, and memory. Second order circuit issues. Global design issues: clocking and interconnect. Use of Cadence CAD tools. Team design of a significant VLSI chip including layout and implementation. Prerequisites: ECE 2330 and (ECE 2660 or ECE 2600)
ECE 4434Dependable Computing Systems (3)
Offered
Fall 2024
Focuses on the techniques for designing and analyzing dependable computer-based systems. Topics include fault models and effects, fault avoidance techniques, hardware redundancy, error detecting and correcting codes, time redundancy, software redundancy, combinatorial reliability modeling, Markov reliability modeling, availability modeling, maintainability, safety modeling, trade-off analysis, design for testability, and the testing of redundant digital systems. Cross-listed as CS 4434. Prerequisite: ECE 3430 or CS 3330 and APMA 3100 or APMA 3110.
ECE 4435Computer Architecture & Design (4.5)
Introduces computer architecture and provides a foundation for the design of complex synchronous digital devices, focusing on: 1) Established approaches of computer architecture, 2) Techniques for managing complexity at the register transfer level, and 3) Tools for digital hardware description, simulation, and synthesis. Includes laboratory exercises. Prerequisites: ECE 2330 and CS 2130
ECE 4440Embedded System Design (4.5)
Offered
Fall 2024
Design, analysis and testing of an embedded computer system to meet specific needs, considering public health, safety and welfare as well as societal impacts. Tradeoff analysis and constraint satisfaction facilitated by the use of appropriate engineering analysis techniques. Semester-long team project develops physical prototype. Counts as major design experience for ECE students. Prerequisites (ECE 3430 or ECE 3502 ECR II) AND (ECE 3750 or ECE 2700) AND 4th year standing
ECE 4457Computer Networks (3)
A first course in communication networks for upper-level undergraduate students. Topics include the design of modern communication networks; point-to-point and broadcast network solutions; advanced issues such as Gigabit networks; ATM networks; and real-time communications. Cross-listed as CS 4457. Prerequisite:  CS 3330 or ECE 3430
ECE 4501Special Topics in Electrical and Computer Engineering (1 - 4)
Offered
Fall 2024
A fourth-level undergraduate course covering a topic not normally covered in the course offerings. The topic usually reflects new developments in the electrical and computer engineering field. Offering is based on student and faculty interests.
ECE 4502Special Topics in Electrical and Computer Engineering (1 - 4)
Offered
Fall 2024
A fourth-level undergraduate course covering a topic not normally covered in the course offerings. The topic usually reflects new developments in the electrical and computer engineering field. Offering is based on student and faculty interests.
ECE 4550Applied Research and Design Lab (1.5)
A lab-based course that provides a hands-on way to learn about new developments in electrical and computer engineering fields. Topics include technologies or application areas that relate to ongoing design and research activities of faculty and students.
ECE 4641Bioelectricity (3)
Studies the biophysical mechanisms governing production and transmission of bioelectric signals, measurement of these signals and their analysis in basic and clinical electrophysiology. Introduces the principles of design and operation of therapeutic medical devises used in the cardiovascular and nervous systems. Cross-listed as BME 4641. Prerequisite: ECE 2630 or ECE 2300 or BME 2101.
ECE 4660Analog Integrated Circuits (3)
Topics include the design and analysis of analog integrated circuits; feedback amplifier analysis and design, including stability, compensation, and offset-correction; layout and floor-planning issues associated with mixed-signal IC design; selected applications of analog circuits such as A/D and D/A converters, references, and comparators; extensive use of CAD tools for design entry, simulation, and layout; and the creation of an analog integrated circuit design project. Prerequisites: ECE 2700 or ECE 3750
ECE 4710Communications (3)
Explores the statistical methods of analyzing communications systems: random signals and noise, statistical communication theory, and digital communications. Analysis of baseband and carrier transmission techniques; and design examples in satellite communications. Prerequisite: (APMA 3100 or MATH 3100) AND (ECE 3750 or ECE 2700)
ECE 4715Communication Systems Laboratory (1.5)
Provides first-hand exposure to communications practice, including response of systems, signal theory, modulation and detection, sampling and quantization, digital signal processing, and receiver design. Corequisite: ECE 4710.
ECE 4750Digital Signal Processing (3)
An introduction to digital signal processing. Topics include discrete-time signals and systems, application of z-transforms, the discrete-time Fourier transform, sampling, digital filter design, the discrete Fourier transform, the fast Fourier transform, quantization effects and nonlinear filters. Prerequisite: ECE 2700 or ECE 3750
ECE 4784Machine Learning for Wireless Communications (3)
This is a survey course in the theory and technology of modern wireless communication systems, exemplified in cellular telephony, paging, microwave distribution systems, wireless networks, and even garage door openers. Wireless technology is inherently interdisciplinary, and the course seeks to serve the interests of a variety of students.
ECE 4850Linear Control Systems (3)
Explores the modeling of linear dynamic systems via differential equations and transfer functions utilizing state space representations and classical input-output representations; the analysis of systems in the time and frequency domains; study of closed-loop systems; state-space methods and the classical stability tests, such as the Routh-Hurwitz criterion, Nyquist criterion, root-locus plots and Bode plots. Prerequisite: ECE 3750 or ECE 2700
ECE 4855Control Laboratory (1.5)
A laboratory consisting of design, analysis, construction, and testing of electrical and electromechanical circuits and devices. Corequisite: ECE 4850.
ECE 4860Digital Control Systems (3)
Analyzes the design of dynamic systems that contain digital computers; the Z transform; block diagrams and transfer functions in the z-domain; block diagrams, frequency response and stability in the z-domain; state space methods; and design using the z-transform and state methods. Prerequisite: ECE 4850 or instructor permission.
ECE 4907Electrical Engineering Projects (1 - 3)
Offered
Fall 2024
Under faculty supervision, students plan a project of at least one semester's duration, conduct the analysis or design and test, and report on the results. If this work is to be the basis for an undergraduate thesis, the course should be taken no later than the seventh semester. Prerequisite: Instructor permission.
ECE 4908Electrical Engineering Projects (1 - 3)
Under faculty supervision, students plan a project of at least one semester's duration, conduct the analysis or design and test, and report on the results. If this work is to be the basis for an undergraduate thesis, the course should be taken no later than the seventh semester. Prerequisite: Instructor permission.
ECE 4991MDE - Capstone Design (4.5)
Offered
Fall 2024
Design, analysis and testing of an electrical system to meet specific needs, considering applicable standards, health, safety, welfare, and societal impacts as well as tradeoff and constraint considerations. Semester-long team project develops physical prototype (not simulation). Counts major design experience for students in ECE. Prerequisites (ECE 3430 or ECE 3502 ECR II) AND (ECE 3750 or ECE 2700) AND 4th year standing
ECE 5150Microelectronic Integrated Circuit Fabrication (3)
Explores fabrication technologies for the manufacture of integrated circuits and microsystems. Emphasizes processes used for monolithic silicon-based systems and basic technologies for compound material devices. Topics include crystal properties and growth, Miller indices, Czochralski growth, impurity diffusion, concentration profiles, silicon oxidation, oxide growth kinetics, local oxidation, ion implantation, crystal annealing, photolithography and pattern transfer, wet and dry etching processes, anisotropic etches, plasma etching, reactive ion etching, plasma ashing, chemical vapor deposition and epitaxy; evaporation, sputtering, thin film evaluation, chemical-mechanical polishing, multilevel metal, device contacts, rapid thermal annealing, trench isolation, process integration, and wafer yield. Prerequisite: ECE 3103 or equivalent.
ECE 5241Optics and Lasers (3)
Reviews the electromagnetic principles of optics; Maxwell's equations; reflection and transmission of electromagnetic fields at dielectric interfaces; Gaussian beams; interference and diffraction; laser theory with illustrations chosen from atomic, gas and semiconductor laser systems; detectors including photomultipliers and semiconductor-based detectors; and noise theory and noise sources in optical detection. Prerequisite: ECE 3103, 3209, 3750.
ECE 5260Microwave Engineering I (3)
Design and analysis of passive microwave circuits. Topics include transmission lines, electromagnetic field theory, waveguides, microwave network analysis and signal flow graphs, impedance matching and tuning, resonators, power dividers and directional couplers, and microwave filters. Prerequisite: ECE 3209 or instructor permission.
ECE 5501Special Topics in Electrical and Computer Engineering (0.5 - 3)
A first-level graduate/advanced undergraduate course covering a topic not normally covered in the course offerings. The topic usually reflects new developments in the electrical and computer engineering field. Offering is based on student and faculty interests. Prerequisite: Instructor permission.
ECE 5502Special Topics in Electrical and Computer Engineering (1 - 3)
A first-level graduate/advanced undergraduate course covering a topic not normally covered in the course offerings. The topic usually reflects new developments in the electrical and computer engineering field. Offering is based on student and faculty interests. Prerequisite: Instructor permission.
ECE 5555Special Topics in Distance Learning (3)
Special Topics in Distance Learning
ECE 5630Introduction to VLSI (3)
Digital CMOS circuit design and analysis: combinational and sequential circuits, arithmetic structures, memories. Modern design issues: leakage, optimization, clocking, and interconnect. VLSI circuit design, simulation, and layout. Prerequisite: ECE 2630, 2330. Desirable: ECE 3103, ECE 3330 or equivalent.
ECE 5750Digital Signal Processing (3)
Fundamentals of discrete-time signal processing are presented. Topics include discrete-time linear systems, z-transforms, the DFT and FFT algorithms, digital filter design, and problem-solving using the computer. Prerequisite: ECE 3750 and 3760, or equivalent.
ECE 5755Digital Signal Processing Laboratory (1.5)
This course provides hands-on exposure to real-time digital signal sampling (DSP) using general-purpose DSP processors. The laboratory sequence explores sampling/reconstruction, aliasing, quantization errors, fast Fourier transform, spectral analysis, and FIR/IIR digital filter design and implementation. Programming is primarily in C++, with exposure to assembly coding. Prerequisite: ECE 3750, ECE 4760 or ECE 6750 co-requisite
ECE 6140Fundamentals of Nanoelectronics (3)
Today's electronic devices are reaching nanometer dimensions where fundamental quantum and atomistic processes dominate. Instead of the traditional 'top-down' classical viewpoint in "Solid State Device" courses, quantum transport principles are needed to understand `bottom-up' how current flows through individual atoms, molecules, nanotubes or spintronic devices. This course provides a convenient starting point.
ECE 6155Microelectronic Integrated Circuit Fabrication Laboratory (1.5)
Topics include the determination of semiconductor material parameters: crystal orientation, type, resistivity, layer thickness, and majority carrier concentration; silicon device fabrication and analysis techniques: thermal oxidation, oxide masking, solid state diffusion of intentional impurities, metal electrode evaporation, layer thickness determination by surface profiling and optical interferometer; MOS transistor design and fabrication using the above techniques, characterization, and verification of design models used. Corequisite: ECE 5150.
ECE 6163Solid State Devices (3)
Offered
Fall 2024
Introduces semiconductor device operation based on energy bands and carrier statistics. Describes operation of p-n junctions and metal-semiconductor junctions. Extends this knowledge to descriptions of bipolar and field effect transistors, and other microelectronic devices. Related courses: ECE 5150, 6155, and 6167. Prerequisite: ECE 3103 or equivalent, or solid state materials/physics course.
ECE 6261Microwave Engineering II (3)
Explores theory and design of active microwave circuits. Review of transmission line theory, impedance matching networks and scattering matrices. Transistor s-parameters, amplifier stability and gain, and low-noise amplifier design. Other topics include noise in two-port microwave networks, negative resistance oscillators, injection-locked oscillators, video detectors, and microwave mixers. Prerequisite: ECE 5260 or instructor permission.
ECE 6265Microwave Engineering Laboratory (1.5)
Explores measurement and behavior of high-frequency circuits and components. Equivalent circuit models for lumped elements. Measurement of standing waves, power, and frequency. Use of vector network analyzers and spectrum analyzers. Computer-aided design, fabrication, and characterization of microstrip circuits. Corequisite: ECE 5260 or instructor permission.
ECE 6332VLSI Design (3)
Digital CMOS circuit design and analysis: combinational circuits, sequential circuits, and memory. Second order circuit issues. Global design issues: clocking and interconnect. Use of Cadence CAD tools. Semester long team research project investigating new areas in circuit design. Prerequisites: ECE 2630, ECE 2330.
ECE 6434Dependable Computing Systems (3)
Offered
Fall 2024
Focuses on techniques for designing and analyzing dependable computer-based systems. Topics include basic dependability concepts and attributes, fault models and effects, combinatorial and state-space modeling, hardware redundancy, error detecting and correcting codes, time redundancy, software fault tolerance, checkpointing and recovery, reliable networked systems, error detection techniques, and experimental dependability evaluation techniques. Prerequisites: A basic knowledge of probability and computer architecture is required. A working knowledge of programming is required for homework and mini projects.
ECE 6435Computer Architecture and Design (3)
Integration of computer organization concepts such as data flow, instruction interpretation, memory systems, interfacing, and microprogramming with practical and systematic digital design methods such as behavioral versus structural descriptions, divide-and-conquer, hierarchical conceptual levels, trade-offs, iteration, and postponement of detail.  Design exercises are accomplished using a hardware description language and simulation.  Prerequisite by topic:  Digital Logic Design (ECE 2330 or equivalent), Introductory Computer Architecture (ECE 3330 or equivalent), Assembly Language Programming.
ECE 6465Human-Robot Interaction (3)
Interactions between robots and humans are influenced by form, function and expectations. Quantitative techniques evaluate performance of specific tasks and functions. Qualitative techniques are used to evaluate the interaction and to understand expectations and perceptions of the human side of the interaction. Students use humanoid robots to develop and evaluate interactions within a specific application context.
ECE 6501Topics in Electrical and Computer Engineering (3)
Offered
Fall 2024
A first-level graduate course covering a topic not normally covered in the graduate course offerings. The topic will usually reflect new developments in the electrical and computer engineering field. Offering is based on student and faculty interests. Prerequisite: Instructor permission.
ECE 6502Special Topics in Electrical and Computer Engineering (1 - 3)
Offered
Fall 2024
A first-level graduate course covering a topic not normally covered in the graduate course offerings. The topic will usually reflect new developments in the electrical and computer engineering field. Offering is based on student and faculty interests. Prerequisite:  Instructor permission.
ECE 6505Electrical and Computer Engineering Seminar (1)
Offered
Fall 2024
This one-hour weekly seminar course features presentations given by ECE faculty members, to introduce various research areas, topics, and advances in Electrical and Computer Engineering.  It is a one-credit course required for all first-year ECE graduate students. 
ECE 6550Special Topics in Electrical and Computer Engineering (1 - 3)
A non-graded lab-based course that provides a hands-on way to learn about new developments in electrical and computer engineering fields. Topics include technologies or application areas that relate to ongoing design and research activities of faculty and students.
Course was offered Spring 2019, Fall 2017
ECE 6555Special Topics in Distance Learning (3)
Offered
Fall 2024
Special Topics in Distance Learning
ECE 6640Fundamentals of Photovoltaics and Solar Energy (3)
Solar energy plays an important role in the growth of renewable energy. This course provides an introduction to Photovoltaics and solar energy generation and gives an overview on the subject. The course will describe the operation of photovoltaic cells and efficiency improvements, industrial processes, solar thermal power generation, thin films and nanomaterials for photovoltaics and future technologies.
ECE 6642Optoelectronic Devices (3)
Offered
Fall 2024
Optoelectronics merges optics and microelectronics. Optoelectronic devices and circuits have become core technologies for several key technical areas such as telecommunications, information processing, optical storage, and sensors. This course will cover devices that generate (semiconductor light emitting diodes and lasers), modulate, amplify, switch, and detect optical signals. Also included are solar cells, photonic crystals, and plasmonics.
ECE 6660Analog Integrated Circuits (3)
Design and analysis of analog integrated circuits. Topics include feedback amplifier analysis and design including stability, compensation, and offset-correction; layout and floor-planning issues associated with mixed-signal IC design; selected applications of analog circuits such as A/D and D/A converters, references, and comparators; and extensive use of CAD tools for design entry, simulation, and layout. Includes an analog integrated circuit design project. Prerequisite: ECE 3103 and 3632, or equivalent.
ECE 6711Probability and Stochastic Processes (3)
Offered
Fall 2024
Topics include probability spaces; random variables and vectors; and random sequences and processes; especially specification and classification. Includes detailed discussion of second-order stationary processes and Markov processes; inequalities, convergence, laws of large numbers, central limit theorem, ergodic, theorems; and MS estimation, Linear MS estimation, and the Orthogonality Principle. Prerequisite: APMA 3100, MATH 3100, or equivalent.
ECE 6713Communication Systems Engineering (3)
A first graduate course in principles of communications engineering. Topics include a brief review of random process theory, principles of optimum receiver design for discrete and continuous messages, matched filters and correlation receivers, signal design, error performance for various signal geometries, Mary signaling, linear and nonlinear analog modulation, and quantization. The course also treats aspects of system design such as propagation, link power calculations, noise models, RF components, and antennas. Prerequisite: Undergraduate course in probability.
ECE 6714Probabilistic Machine Learning (3)
Covers foundations of estimation theory and machine learning in a probabilistic modeling framework. Topics include frequentist and Bayesian estimation, analysis of estimators, linear regression, linear classification, graphical models, Markov models, sampling methods, and variational inference. Requires APMA 3100 or an equivalent course on Probability, familiarity with linear algebra, and Python programming.
ECE 6717Information Theory and Coding (3)
A comprehensive treatment of information theory and its application to channel coding and source coding. Topics include the nature of information and its mathematical description for discrete and continuous sources; noiseless coding for a discrete source; channel capacity and channel coding theorems of Shannon; error correcting codes; introduction to rate distortion theory and practice of data compression; information and statistical measures. Prerequisite: two years of college-level mathematics including discrete probability, or consent of instructor.
ECE 6750Digital Signal Processing (3)
A first graduate course in digital signal processing. Topics include discrete-time signals and systems, application of z-transforms, the discrete-time Fourier transform, sampling, digital filter design, the discrete Fourier transform, the fast Fourier transform, quantization effects and nonlinear filters. Additional topics can include signal compression and multi-resolution processing.
ECE 6782Machine Learning in Image Analysis (3)
Offered
Fall 2024
This course focuses on an in-depth study of advanced topics and interests in image data analysis. Students will learn practical image techniques and gain mathematical fundamentals in machine learning needed to build their own models for effective problem solving. The graduate students (ECE/CS 6501) will be given additional programming tasks and more advanced theoretical questions.
ECE 6784Machine Learning for Wireless Communications (3)
This is an entry-level course on wireless communications, especially we will discuss how machine learning impacts the design of wireless systems. The goal is to teach fundamental and core techniques that enable physical layer wireless communications.
ECE 6785Optical Communications (3)
This course covers the basics of optical communications. The first part of the course is spent describing optical devices including the LED, laser, optical fiber, PIN photodiode, APD detectors, optical amplifiers, modulators, etc. Characteristics of devices and their effect on the overall system are discussed. The second part of the course is devoted to system design and analysis. The emphasis is on modulation/demodulation and channel control methods, defining performance measures, and describing network architectures. Common applications of optical communications are then discussed. This course is intended to complement training in communications and in optics. Prerequisites: ECE 3750 and APMA 3100.
Course was offered Spring 2013, Spring 2011
ECE 6850Introduction to Control Systems (3)
Offered
Fall 2024
This course aims to provide an instruction to basic principles and tools for the analysis and design of control systems. It is intended for general graduate students in engineering and science. Topics to be covered include concepts, examples and designs of feedback, system modeling, linear and nonlinear dynamic behaviors, stability analysis, frequency domain analysis and design, transfer functions, PID control, and robustness of control systems.
ECE 6851Linear Automatic Control Systems (3)
Provides a working knowledge of the analysis and design of linear automatic control systems using classical methods. Introduces state space techniques; dynamic models of mechanical, electrical, hydraulic and other systems; transfer functions; block diagrams; stability of linear systems, and Nyquist criterion; frequency response methods of feedback systems design and Bode diagram; Root locus method; System design to satisfy specifications; PID controllers; compensation using Bode plots and the root locus. Powerful software is used for system design. Cross-listed as MAE 6610. Prerequisite: ECE 3750 or instructor permission.
ECE 6852Linear State Space Control Systems (3)
Offered
Fall 2024
Studies linear dynamical systems emphasizing canonical representation and decomposition, state representation, controllability, observability, stability normal systems, state feedbacks and the decoupling problem. Representative physical examples. Cross-listed as MAE 6620. Prerequisite: APMA 6150, ECE 6851, or instructor permission.
ECE 6993Independent Study (1 - 3)
Offered
Fall 2024
Detailed study of graduate course material on an independent basis under the guidance of a faculty member.
ECE 6995Supervised Project Research (3 - 6)
Formal record of student commitment to project research under the guidance of a faculty advisor. A project report is required at the completion of each semester. May be repeated as necessary.
ECE 6996Supervised Graduate Teaching Experience (3)
Offered
Fall 2024
A guided teaching experience for Ph.D. students, with selected teaching assignments and directed performance evaluation, under the supervision of a faculty member, as a part of Ph.D. training designed for students' development of independent teaching skills.
ECE 7209Techniques of Advanced Electromagnetics (3)
Topics include techniques for solving and analyzing engineering electromagnetic systems; relation of fundamental concepts of electromagnetic field theory and circuit theory, including duality, equivalence principles, reciprocity, and Green's functions; applications of electromagnetic principles to antennas, waveguide discontinuities, and equivalent impedance calculations. Prerequisite: ECE 4209 or instructor permission.
Course was offered Spring 2016, Spring 2013, Fall 2010
ECE 7332Advanced VLSI Systems Design (3)
This course surveys advanced, challenging topics related to digital circuit design, using SRAM as a design driver. Topics include CMOS scaling and technology changes, variation tolerant design, leakage reduction, design for reliability, alternative devices, and advanced memory design. The class draws heavily from current literature on these topics. Students will conduct a semester long project related to the class topics. Prerequisites: ECE 4332 or ECE 6332 or instructor permission.
Course was offered Spring 2015, Spring 2011
ECE 7457Computer Networks (3)
Analyzes network topologies; backbone design; performance and queuing theory; data-grams and virtual circuits; technology issues; layered architectures; standards; survey of commercial networks, local area networks, and contention-based communication protocols; encryption; and security. Course equivalent to CS 7457.. Prerequisite: CS 6456 or instructor permission.
Course was offered Fall 2017, Fall 2013, Fall 2011, Fall 2009
ECE 7501Special Topics in Electrical and Computer Engineering (1 - 3)
A second level graduate course covering a topic not normally covered in the graduate course offerings. Topics usually reflect new developments in electrical and computer engineering and are based on student and faculty interests. Prerequisite: Instructor permission.
ECE 7502Special Topics in Electrical and Computer Engineering (3)
A second level graduate course covering a topic not normally covered in the graduate course offerings. Topics usually reflect new developments in electrical and computer engineering and are based on student and faculty interests. Prerequisite:  Instructor permission.
Course was offered Spring 2015, Spring 2010
ECE 7555Advanced Topics in Distance Learning (3)
Advanced Topics in Distance Learning
Course was offered Fall 2015, Fall 2010
ECE 7712Digital Communications (3)
An in-depth treatment of digital communications techniques and performance. Topics include performance of uncoded systems such as Mary, PSK, FSK, and multi-level signaling; orthogonal and bi-orthogonal codes; block and convolutional coding with algebraic and maximum likelihood decoding; burst correcting codes; efficiency and bandwidth; synchronization for carrier reference and bit timing; baseband signaling techniques; intersymbol interference; and equalization. Prerequisite: ECE 6711.
ECE 7776Advanced Digital Signal Processing (3)
Provides the background of multi-dimensional digital signal processing, emphasizing the differences and similarities between the one-dimensional and multi-dimensional cases. Includes M-D Fourier transforms, M-D sampling and reconstruction, M-D DFT, M-D filtering, M-D spectral estimation, and inverse problems such as tomography, iterative signal reconstruction, and coherent imaging. Broad applications in radar, sonar, seismic, medical, and astronomical data processing are introduced. Prerequisite: ECE 5750 or instructor permission.
Course was offered Fall 2018, Fall 2017, Fall 2015
ECE 7855Multivariable Robust Control Systems (3)
Studies advanced topics in modern multivariable control theory; matrix fraction descriptions, state-space realizations, multivariable poles and zeroes; operator norms, singular value analysis; representation of unstructured and structured uncertainty, linear fractional transformation, stability robustness and performance robustness, parametrization of stabilizing controllers; approaches to controller synthesis; H2-optimal control and loop transfer recovery; H2-optimal control and state-space solution methods. Cross-listed as MAE 7650. Prerequisite: ECE 6852 or equivalent, or instructor permission.
Course was offered Fall 2017, Spring 2015, Spring 2013
ECE 7856Nonlinear Control Systems (3)
Studies the dynamic response of nonlinear systems; analyzes nonlinear systems using approximate analytical methods; stability analysis using the second method of Liapunov, describing functions, and other methods. May include adaptive, neural, and switched systems. Cross-listed as MAE 7660. Prerequisite: ECE 6851 and 6852.
ECE 7858Digital Control Systems (3)
Includes sampling processes and theorems, z-transforms, modified transforms, transfer functions, and stability criteria; analysis in frequency and time domains; discrete state models of systems containing digital computers; and advanced discrete-time control techniques. Some in-class experiments using small computers to control dynamic processes. Cross-listed as MAE 7680. Prerequisite: ECE 4860 and 6851, APMA 6150, or equivalent.
ECE 7993Independent Study (3)
Detailed study of graduate course material on an independent basis under the guidance of a faculty member.
ECE 7995Supervised Project Research (3 - 6)
Formal record of student commitment to project research under the guidance of a faculty advisor. Registration may be repeated as necessary.
ECE 8000TNon-UVa Transfer/Test Credit Approved (1 - 48)
Non-UVa Transfer/Test Credit Approved
ECE 8501Special Topics in Electrical and Computer Engineering (3)
A third-level graduate course covering a topic not normally covered in the graduate course offerings. The topic will usually reflect new developments in the electrical and computer engineering field. Offering is based on student and faculty interests. Prerequisite: Instructor permission.
ECE 8502Special Topics in Electrical and Computer Engineering (3)
A third-level graduate course covering a topic not normally covered in the graduate course offerings. The topic will usually reflect new developments in the electrical and computer engineering field. Offering is based on student and faculty interests. Prerequisite:  Instructor permission.
Course was offered Spring 2010
ECE 8782Magnetic Resonance Imaging (3)
The course covers the physical principles of nuclear magnetic resonance, the biological and medical problems addressed using MRI, the analysis and design of MRI pulse sequences from a signal processing perspective, and MR image reconstruction techniques. It will introduce various advanced topics, including non-Cartesian scanning and compressed sensing. The course will include a laboratory session working with an MRI scanner. Prerequisites: BME 6311 BME Measurement Principles, or knowledge of 2D Fourier transforms and linear systems theory.
Course was offered Fall 2013
ECE 8825Adaptive Control (3)
Analyzes parametrized control system models, signal norms, Lyapunov stability, passivity, error models, gradient and least squares algorithms for parameter estimation, adaptive observers, direct adaptive control, indirect adaptive control, certainty equivalence principle, multivariable adaptive control, stability theory of adaptive control, and applications to robot control systems. Prerequisite: ECE 6851 and 6852, or instructor permission.
Course was offered Fall 2016, Spring 2014, Fall 2011
ECE 8897Graduate Teaching Instruction (1 - 6)
Offered
Fall 2024
For master's students.
ECE 8999Thesis (1 - 12)
Offered
Fall 2024
Formal record of student commitment to master's thesis research under the guidance of a faculty advisor. May be repeated as necessary.
ECE 9897Graduate Teaching Instruction (1 - 6)
Offered
Fall 2024
For doctoral students.
ECE 9999Dissertation (1 - 12)
Offered
Fall 2024
Formal record of student commitment to doctoral research under the guidance of a faculty advisor. May be repeated as necessary.